| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

FrontPage

This version was saved 13 years, 5 months ago View current version     Page history
Saved by hoffman.tricia@gmail.com
on February 12, 2011 at 12:44:24 pm
 

Machine Learning 101

 

Organizer: Doug Chang

Instructors: Dr. Michael Bowles & Dr. Patricia Hoffman

 

Overview of the course

Machine Learning 101, deals primarily with supervised learning problems.  Machine Learning 102 will cover unsupervised learning and fault detection. 

 

Both 101 and 102 begin at the level of elementary probability and statistics and from that background survey a broad array of machine learning techniques.  The classes will give participants a working knowledge of these techniques and will leave them prepared to apply those techniques to real problems.  To get the most out of the class, participants will need to work through the homework assignments. 

 

Prerequisites

This class assumes a moderate level of computer programming proficiency.  We will use R (the open source statistics language) for the homework and for the examples in class.  We will cover some of the basics of R and do not assume any prior knowledge of R.  You can find references to how to use R on this website and we will give out sample code during classes that will help get you started. 

 

You'll need some general beginner-level background in probability, calculus, linear algebra and vector calculus.  We will cover most of what is required during the lectures.  The appendices in the back of the Tan text are more than sufficient level for this class. 

 

Machine Learning 101 and 102 can be taken in any any order.  The prerequisites for the two classes are the same.  They second five week session (Machine Learning 102) will culminate in the students giving presentations on papers they have read.

 

Why use R?

We're going to use R as our lingua franca for looking at homework problems, discussing them and comparing different solution approaches.    Load R onto your laptop or desk computer before you come to the first class.   http://cran.r-project.org/  We will include some descriptive material on using R in the first two lectures in order to get everyone up to speed on it. To integrate R with Eclipse click here. References for R are here: References for R Comment on these references here:  Reference for R Comments  More R references

 

General Sequence of Classes:

Machine Learning 101:   Supervised learning

Machine Learning 102Unsupervised Learning and Fault Detection

Text: "Introduction to Data Mining", by Pang-Ning Tan, Michael Steinbach and Vipin Kumar

 

Machine Learning 201:    Advanced Regression Techniques, Generalized Linear Models, and Generalized Additive Models    

Machine Learning 202:   Collaborative Filtering, Bayesian Belief Networks, and Advanced Trees

Text:  "The Elements of Statistical Learning - Data Mining, Inference, and Prediction"  by Trevor Hastie, Robert Tibshirani, and Jerome Friedman

 

Future Topics 

     Data Mining Social Networks

     Text Mining

     Recommender Methods

     Big Data

 

 

Machine Learning 101 Syllabus:   

Week  Topics  Homework  Links 
       
1st Week  Exploring Data    FirstWeekNotes  
    1/22/2011  Data Quality     
  Aggregation, Sampling     
    1/23/2011 Beginning with R  held at Hacker Dojo 10 AM - Noon Notes
meetup.com 
 
 
   
2nd Week   Supervised Classification and Prediction     
    1/29/2011  General Background  HW #1 Due  SecondWeekNotes 
   Performance Evaluation         
   Trees        
    HW02.pdf    
3rd Week  Regression     
    2/5/2011  Ordinary Least Squares  HW #2 Due   ThirdWeekNotes 
  Ridge Regression  HW03.pdf 
 
       
4th Week  Classification and Regression Techniques     
    2/12/2011  k Nearest Neighbors  HW #3 Due  FourthWeekNotes 
  Na├»ve Bayes  Homework - Winter 2011    
       
5th Week  Support Vector Machines     
    2/26/2011  Linear & Nonlinear  HW #4 Due   
  Separable & Nonseparable     
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time to Sign up for the NEXT CLASS: Machine Learning 102

 

General Calendar for the Year:

 

Fall 2010: Machine Learning 101 &  Machine Learning 102

 

Winter  2011:  Machine Learning 101 &  Machine Learning 201

 

Spring 2011:  Machine Learning 102 &  Machine Learning 202

 

Upcoming Classes:

Machine Learning 102: 9 AM - 1 PM for Five Saturdays starting March 5, 2011
      Buy Ticket: http://events.linkedin.com/Machine-Learning-102/pub/557127
      Suggest Event to LinkedIn 
          

           friends and Groups:  http://events.linkedin.com/Machine-Learning-102/pub/557127
      Class Web Site:  http://machinelearning102.pbworks.com/w/page/32890439/FrontPage


Machine Learning 202: 7 PM - 9 PM Wed and Thurs for five weeks starting Feb 16, 2011
     Buy Ticket:  http://www.eventbrite.com/event/1294115735/auto
     Suggest Event to LinkedIn
        

            friends and Groups:   http://events.linkedin.com/Machine-Learning-202/pub/557111
     Class Web Site: http://machinelearning202.pbworks.com/w/page/32890439/FrontPage

 

 

There are more Machine Learning References on Patricia's web site http://patriciahoffmanphd.com/

 

Anyone can read this web site, however only the instructors have permission to edit the site. 

If you haven't already filled out the class survey form on the meet-up page, please fill out the form now.   If you haven't already signed up on the on the meet-up page please do so now. 

Comments (0)

You don't have permission to comment on this page.