ESL Chap3 — Linear Methods for Regression

Linear Methods for Regression

Outline

e The simple linear regression model
e Multiple linear regression

e Model selection and shrinkage—the state of the art
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Preliminaries

Data (z1,v1),--- (N, YN).

x; 1s the predictor (regressor, covariate, feature, independent variable)
y; 1s the response (dependent variable, outcome)

We denote the regression function by
n(z) =E (Y|z)

This 1s the conditional expectation of Y given .

The linear regression model assumes a specific linear form for 7

n(z) = a+ Bz

which is usually thought of as an approximation to the truth.
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Fitting by least squares

Minimize:

N
Bo, B = argming g Z(yz — o — 5%’)2
i=1

Solutions are

Zj\rz1( — T)y;
2321 (zi — T)°

b=

fo =17 — bz
Ui = ﬂAo + BCBZ are called the fitted or predicted values

Ti = Yi — 30 — sz are called the residuals
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Standard errors & confidence intervals

We often assume further that

yi = PBo + Bz + €

where E (¢;) = 0 and Var (¢;) = o2. Then

< ()= 1= J

Estimate 02 by 62 = > (y; — 4;)*/(IN — 2).

Under additional assumption of normality for the ¢;s, a 95% confidence
interval for G is: 3 + 1.965%(5)
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Fitted Line and Standard Errors

selif(@)] = |var(y) + var(B)(z — 3
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-1.0 -0.5 0.0 0.5 1.0

Fitted regression line with pointwise standard errors: 7)(x) + 2se[7(x)].
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Multiple linear regression

Model 1s
P
fz:) =Bo+ ) wi;B
j=1

Equivalently in matrix notation:

f= X3

f is N-vector of predicted values
X 1s N x p matrix of regressors, with ones in the first column

(3 1s a p-vector of parameters
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Estimation by least squares

p—1
B = argmin Z(yz — Po — Zﬂ?z‘jﬁj)Q
i =1
= argmin(y — X3)" (y — XB)

Figure 3.2 shows the /V-dimensional geometry

Solution is

(X' X)Xy

y = Xp

@
|

Also Var (8) = (XTX) 152


http://www-stat.stanford.edu/~hastie/Printer/315-LECTURES/FIGURES/chap3/fig3-2.pdf
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The course website has some additional notes (linear.pdf) on multiple
linear regression, with an emphasis on computations.
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The Bias-variance tradeoff

A good measure of the quality of an estimator f (x) is the mean squared
error. Let fy(x) be the true value of f(x) at the point z. Then

Mse [f(:c)] =3Y [f(ilf) — fO(flﬁ')]2

This can be written as

A

Mse [f(z)] = Var [f(z)] + [E f(z) — fo(z)]?
This 1s variance plus squared bias.

Typically, when bias is low, variance is high and vice-versa. Choosing
estimators often involves a tradeoff between bias and variance.

11
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e If the linear model is correct for a given problem, then the least
squares prediction f is unbiased, and has the lowest variance among
all unbiased estimators that are linear functions of y

e But there can be (and often exist) biased estimators with smaller
Mse .

e Generally, by regularizing (shrinking, dampening, controlling) the
estimator in some way, its variance will be reduced; if the
corresponding increase in bias is small, this will be worthwhile.

e Examples of regularization: subset selection (forward, backward, all

subsets); ridge regression, the lasso.

e In reality models are almost never correct, so there 1s an additional
model bias between the closest member of the linear model class and
the truth.
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Model Selection

Often we prefer a restricted estimate because of its reduced estimation
variance.

Closest fit in population

Realization |
l'\ ‘
C / Closest fit
Truth - oE MODEL
* R SPACE
Model bias/\
Estimation Bias P Shrunken fit
Estimation L

Variance

RESTRICTED
MODEL SPACE
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Analysis of time series data

Two approaches: frequency domain (fourier)—see discussion of wavelet
smoothing.

Time domain. Main tool 1s auto-regressive (AR) model of order k:

Yt = P1yi—1 + BoYi—2 -+ BrYi—k + €

Fit by linear least squares regression on lagged data

Yyt = B1yi—1 + Boyr—2 - BrYi—k
Yi—1 = B1Yi—2 + Boyr—3 - BrlYt—k—1
Yk+1 = 1Yk + BoYr—1 - Bry1

14
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Example: NYSE data

Time series of 6200 daily measurements, 1962-1987
volume — log(trading volume) — outcome
volume.Lj — log(trading volume)qay—;, J = 1,2,3
ret.Lj— A log(Dow Jones)qay—;, 7 =1,2,3
aret.Lj— |Alog(Dow Jones)|qay_;, 7 =1,2,3
vola.Lj— volatilitygay_;, j=1,2,3

Source—Weigend and LeBaron (1994)

We randomly selected a training set of size 50 and a test set of size 500, from the

first 600 observations.

15
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OLS Fit

Results of ordinary least squares analysis of NYSE data

Term Coefficient ~ Std. Error  t-Statistic

Intercept -0.02 0.04 -0.64
volume.L.1 0.09 0.05 1.80
volume.L2 0.06 0.05 1.19
volume.L3 0.04 0.05 0.81
retd.LL1 0.00 0.04 0.11
retd.L.2 -0.02 0.05 -0.46
retd.L.3 -0.03 0.04 -0.65
aretd.LL1 0.08 0.07 1.12
aretd.L.2 -0.02 0.05 -0.45
aretd.L.3 0.03 0.04 0.77
vola.LL1 0.20 0.30 0.66
vola.L.2 -0.50 0.40 -1.25
vola.L.3 0.27 0.34 0.78
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Variable subset selection

We retain only a subset of the coefficients and set to zero the coefficients
of the rest.

There are different strategies:

o All subsets regression finds for each s € 0,1, 2, ... p the subset of
size s that gives smallest residual sum of squares. The question of
how to choose s involves the tradeoff between bias and variance: can
use cross-validation (see below)

e Rather than search through all possible subsets, we can seek a good
path through them. Forward stepwise selection starts with the
intercept and then sequentially adds into the model the variable that
most improves the fit. The improvement in fit is usually based on the

18
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F’ ratio

_ RSS(BOM) _ RSS(Bnew)

F -
RSS(pmev) /(N — s)

e Backward stepwise selection starts with the full OLS model, and
sequentially deletes variables.

e There are also hybrid stepwise selection strategies which add in the
best variable and delete the least important variable, in a sequential
manner.

e Each procedure has one or more runing parameters:

— subset size

— P-values for adding or dropping terms

19
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Model Assessment

Objectives:
1. Choose a value of a tuning parameter for a technique
2. Estimate the prediction performance of a given model

For both of these purposes, the best approach is to run the procedure on
an independent test set, if one 1s available

If possible one should use different test data for (1) and (2) above: a
validation set for (1) and a rest set for (2)

Often there is insufficient data to create a separate validation or test set. In
this instance Cross-Validation 1s useful.

20



ESL Chap3 — Linear Methods for Regression

K -Fold Cross-Validation

Primary method for estimating a tuning parameter A\ (such as subset size)
Divide the data into K roughly equal parts (typically K=5 or 10)
1 2 3 4 5

Tran | Train | Test | Tran | Tran

e foreachk =1, 2,... K, fit the model with parameter A to the other K — 1
parts, giving B —k (M) and compute its error in predicting the kth part:

Ek(A> — Ziekth part (yl T Xiﬁ_k(A))z'
This gives the cross-validation error

CV(N) = % > Er(N)

e do this for many values of A and choose the value of A that makes C'V ()
smallest.

21
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In our variable subsets example, A is the subset size

37 () are the coefficients for the best subset of size \, found from the

training set that leaves out the kth part of the data
Ej () is the estimated test error for this best subset.

from the K cross-validation training sets, the K test error estimates are

averaged to give

CV(A) =(1/K) ) Ex(A).

]~

k=1

Note that different subsets of size A will (probably) be found from each of
the K cross-validation training sets. Doesn’t matter: focus is on subset size,

not the actual subset.

22



ESL Chap3 — Linear Methods for Regression

all subsets
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e The focus is on subser size—not which variables are in the model.

e Variance increases slowly—typically o° /N per variable.
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Figure 3.5: All possible subset models for the prostate
cancer example. At each subset size 1s shown the resid-

ual sum-of-squares for each model of that size.
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The Bootstrap approach

e Bootstrap works by sampling /V times with replacement from training set to
form a “bootstrap” data set. Then model is estimated on bootstrap data set,

and predictions are made for original training set.
e This process is repeated many times and the results are averaged.
e Bootstrap most useful for estimating standard errors of predictions.

e Can also use modified versions of the bootstrap to estimate prediction error.
Sometimes produces better estimates than cross-validation (topic for current
research)

25
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Cross-validation- revisited

Consider a simple classifier for wide data:

1. Starting with 5000 predictors, find the 200 predictors having the largest
correlation with the class labels

2. Carry about nearest-centroid classification using only these 200 genes

How do we estimate the test set performance of this classifier?

Wrong: Apply cross-validation in step 2. Right: Apply cross-validation to
steps 1 and 2.

It is easy to simulate realistic data with the class labels independent of the
outcome, — so that true test error =50%— but “Wrong” CV error estimate is

zero!

We have seen this error made in 4 high profile microarray papers in the last couple
of years. See Ambroise and McLachlan PNAS 2002.

A little cheating goes a long way

26
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Validation and test set issues

Important to have both cross-validation and test sets, since we often run CV
many times, fiddling with different parameters. This can bias the CV results
A separate test set provides a convincing, independent assessment of a
model’s performance Test set results might still overestimate actual
performance, as a real future test set may differ in many ways from today’s
data

27
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Does cross-validation really work?

Consider a scenario with N = 20 samples in two equal-sized classes, and

p = 500 quantitative features that are independent of the class labels. The
true error rate of any classifier is 50%. Consider a simple univariate
classifier- a single split that minimizes the misclassification error (a
“stump”). Fitting to the entire training set, we will find a feature that splits
the data very well If we do 5-fold CV, this same feature should split any

4 /5ths and 1/5th of the data well too, and hence its CV error will be small
(much less than 50%) Thus CV does not give an accurate estimate of error. Is
this argument correct?

28
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Simulation results

error on full training set
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NYSE example continued

Table shows the coefficients from a number of different selection and shrinkage
methods, applied to the NYSE data.

Term OLS VSS Ridge Lasso PCR PLS
Intercept -0.02 0.00 -0.01 -0.02 -0.02 -0.04
volume.L1 0.09 0.16 0.06 0.09 0.05 0.06
volume.L2 0.06 0.00 0.04 0.02 0.06 0.06
volume.L3 0.04 0.00 0.04 0.03 0.04 0.05
retd.L1 0.00 0.00 0.01 0.01 0.02 0.01
retd.L2 -0.02 0.00 -0.01 0.00 -0.01 -0.02
retd.L3 -0.03 0.00 -0.01 0.00 -0.02 0.00
aretd.L1 0.08 0.00 0.03 0.02 -0.02 0.00
aretd.L2 -0.02 -0.05 -0.03 -0.03 -0.01 -0.01
aretd.L3 0.03 0.00 0.01 0.00 0.02 0.01
vola.LL1 0.20 0.00 0.00 0.00 -0.01 -0.01
vola.L2 -0.50 0.00 -0.01 0.00 -0.01 -0.01
vola.L3 0.27 0.00 -0.01 0.00 -0.01 -0.01
Test err 0.050 0.041 0.042 0.039 0.045 0.044
SE 0.007 0.005 0.005 0.005 0.006 0.006

CV was used on the 50 training observations (except for OLS). Test error for
constant: 0.061.
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all subsets ridge regression
N 51
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sample size = 50.
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All Subsets Ridge Regression
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Figure 3.6: FEstimated prediction error curves and
their standard errors for the wvarious selection and

shrinkage methods, found by 10-fold cross-validation.
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Shrinkage methods

Ridge regression

The ridge estimator is defined by
B9 = argmin(y — X8)" (y — X8) + \8" 8

Equivalently,

Bridge = argmin (y — Xﬁ)T(y — X0)
subject to Zﬁf < s.

The parameter A > 0 penalizes 3; proportional to its size 6?. Solution is
Br=X"X+ X)Xy

where [ is the identity matrix. This is a biased estimator that for some value of

A > 0 may have smaller mean squared error than the least squares estimator.

Note A = 0 gives the least squares estimator; if A — oo, then B — 0.

33
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Figure 3.7: Profiles of ridge coefficients for the
prostate cancer example, as tuning parameter X\ is var-
ied. Coefficients are plotted versus df(X), the effec-
tive degrees of freedom. A wertical line is drawn at

df = 4.16, the value chosen by cross-validation.
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The Lasso

The lasso is a shrinkage method like ridge, but acts in a nonlinear manner on the

outcome y.

The lasso is defined by

@lasse — argmin (y — Xﬁ)T(y — X0)
subject to Z 16| <t

e Notice that ridge penalty > 3 is replaced by > | 3;].

e this makes the solutions nonlinear in y, and a quadratic programming

algorithm is used to compute them.

e because of the nature of the constraint, if ¢ is chosen small enough then the
lasso will set some coefficients exactly to zero. Thus the lasso does a kind of

continuous model selection.
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e The parameter ¢ should be adaptively chosen to minimize an estimate of

expected, using say cross-validation

® Ridge vs Lasso: if inputs are orthogonal, ridge multiplies least squares
coefficients by a constant < 1, lasso rranslates them towards zero by a

constant, truncating at zero.

OLS

Transformed

Lasso

Coefficient

Z

Coefficient
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L.asso in Action

Profiles of coefficients for NYSE data as lasso shrinkage is varied.
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s =t/to € [0,1], where to = 3 |Bors].
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Figure 3.9: Profiles of lasso coefficients, as tuning
parameter t is varied. Coefficients are plotted versus
s=t/>7" 13;|. A vertical line is drawn at s = 0.5, the
value chosen by cross-validation. Compare Figure 3.7
on page 7; the lasso profiles hit zero, while those for

ridge do not.
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B, Bt

Figure 3.12: FEstimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |B1] + |B2| <t and B7 + 5 < t2,
respectively, while the red ellipses are the contours of

the least squares error function.
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A family of shrinkage estimators

Consider the criterion

for ¢ > 0. The contours of constant value of » _ [3;]? are shown for the case of

two 1nputs.

\

53T T

Contours of constant value of ) _ |3;|* for given values of q.

Thinking of |3;|? as the log-prior density for 3, these are also the equi-contours
of the prior.
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Use of derived input directions

Principal components regression

We choose a set of linear combinations of the x;s, and then regress the outcome
on these linear combinations.

The particular combinations used are the sequence of principal components of the

inputs. These are uncorrelated and ordered by decreasing variance.

If S is the sample covariance matrix of x1, ..., x,, then the eigenvector equations
2
Sqe = dj qv

define the principal components of S.

41
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Largest Principal
Component

Smallest Principal
Component

Figure 3.8: Principal components of some input data
points. The largest principal component is the direc-
tion that maximizes the variance of the projected data,
and the smallest principal component minimizes that
variance. Ridge regression projects y onto these com-
ponents, and then shrinks the coefficients of the low-
variance components more than the high-variance com-

ponents.
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Digression: some notes on Principal Components and the SVD (PCA.pdf)

43


http://www-stat.stanford.edu/~hastie/Printer/315-LECTURES/PCA.pdf
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PCA regression continued

e Write q(;) for the ordered principal components, ordered from largest to
smallest value of d?.

e Then principal components regression computes the derived input columns

z; = Xq;) and then regresses y on z1, z2, . . . zs for some J < p.

e Since the z;s are orthogonal, this regression is just a sum of univariate
regressions:

J
PP =0+ > Az

j=1

where *; is the univariate regression coefficient of y on z;.
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e Principal components regression is very similar to ridge regression: both

operate on the principal components of the input matrix.

e Ridge regression shrinks the coefficients of the principal components, with
relatively more shrinkage applied to the smaller components than the larger;
principal components regression discards the p — J + 1 smallest eigenvalue
components.

1.0

ridge
—  pcr

Shrinkage Factor

00 02 04 06 038

Index
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Partial least squares

This technique also constructs a set of linear combinations of the ;s for
regression, but unlike principal components regression, it uses y (in addition to
X) for this construction.

e We assume that y is centered and begin by computing the univariate

regression coefficient 4; of y on each x;

e From this we construct the derived input z; = ) 4,x;, which is the first

partial least squares direction.

e The outcome y is regressed on z1, giving coefficient Bl, and then we
orthogonalize y, x1,...%x, withrespectto z1: r1 =y — Blzl, and

X; = Xg — 0421

e We continue this process, until J directions have been obtained.
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e In this manner, partial least squares produces a sequence of derived inputs or

directions z1,zo, ... ZJ.

e As with principal components regression, if we continue on to construct
J = p new directions we get back the ordinary least squares estimates; use of

J < p directions produces a reduced regression

e Notice that in the construction of each z;, the inputs are weighted by the
strength of their univariate effect on y.

e [t can also be shown that the sequence z1, z2, . . . Z, represents the conjugate

gradient sequence for computing the ordinary least squares solutions.
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Ridge vs PCR vs PLS vs Lasso

Recent study has shown that ridge and PCR outperform PLS in prediction, and

they are simpler to understand.

Lasso outperforms ridge when there are a moderate number of sizable effects,

rather than many small effects. It also produces more interpretable models.

These are still topics for ongoing research.
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