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1. SUMMARY 
Time-series, or time-sequence, data show the value of a parameter over time.  A common query 
with time-series data is to find all sequences which are similar to a given sequence.  The most 
common technique for evaluating similarity between two sequences involves calculating the 
Euclidean distance between them.  However, many examples can be given where two similar 
sequences are separated by a large Euclidean distance.  In this paper, instead of calculating the 
Euclidean distance directly between two sequences, the sequences are transformed into a feature 
vector and the Euclidean distance between the feature vectors is then calculated.  Results show 
that this approach is superior for finding similar sequences. 
 
2. INTRODUCTION 
Time-series data are sequences showing the value of a parameter, or sometimes parameters, over 
time.  Important time series include stock market prices, interest rates, sales of a product, 
scientific results, weather readings and medical records.  A common query with time-series data 
is to find all sequences which are similar to a given sequence.  In formal terms, given a time 
series ri of length n (1≤i≤n), it is required to find all stored time series which are similar to ri.  
The problem can be extrapolated to two dimensions, where it is required to find all stored images 
similar to a given image [1].  When similar sequences have been found, it is then possible to use 
these sequences to facilitate tasks such as prediction. 
 

In time-series literature, the most common technique for evaluating similarity between two 
sequences is to calculate the Euclidean distance between them and if this is below a given 
threshold ε, then the two sequences are said to be similar [2].  The distance D between two 
sequences ri and si, both of length n, can be calculated by: 
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When p=q=2, formula (1) represents the Euclidean distance.  Given this definition of similarity, 
most research in the area has concentrated upon finding similar sequences as quickly as possible. 
 

Whilst it is important to find similar time sequences quickly, it is vital that the found sequences 
are in fact similar.  Many examples can be given where two similar sequences are not close using 
the Euclidean distance metric.  A simple example would be a pattern involving an upward shift 
at time t1 (Fig. 1).  If this is compared with a second time series with a shift at a later time t2 (t2 
>> t1) then the Euclidean distance depends upon how much larger t2 is than t1.  However, the two 
sequences should be found to be similar, irrelevant of where the step occurs.  Many other 
examples have been given where similar sequences are separated by a large Euclidean distance 
[3, 4, 5]. 
 

Fig. 1 Similar Sequences Separated by a Large Euclidean Distance 
 

Agrawal et al. [2] proposed that signals could be transformed into the Fourier space using the 
Discrete Fourier Transform (DFT).  As the first few Fourier co-efficients contain most of the 
information, a signal can be compressed by using just the first few co-efficients to store it.  In 
later work by Rafiei and Mendelzon [6], it was proposed to utilise also the last few Fourier co-
efficients.  According to Parseval’s theorem, the Euclidean distance between two signals is 
preserved in the Fourier space.  Therefore, whilst the DFT is very useful for compression and 
storage of signals, for time-series similarity, it gives the same results as employing the original 
signal. 
 

To overcome the shortcomings of using Euclidean distance for similarity queries, many 
researchers have advocated that the query sequence should be transformed before applying the 
Euclidean distance [7-11].  Such transformations include shifts (vertical and horizontal), scaling 
(linear and amplitude) and removal of non-matching parts.  However, scaling could be of any 
real-valued size and shifts could occur at any time during the sequence.  Also, non-matching 
parts could appear at any point in the sequence and be of various sizes.  Therefore, the number of 
transformations that a sequence could undergo is infinite and searching for the correct sequence 
of transformations would face the combinatorial explosion problem. 
 

Another approach gives two criteria that must be met for two sequences to be considered similar 
[4].  The first is the Euclidean distance and the second is that the distance between two 
corresponding points in the two sequences cannot be larger than a given threshold.  The problem 
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is that the two sequences could be similar except for one erroneous point that differs widely 
between the two sequences.  Thus, the two sequences would be found to be dissimilar. 
 

It is proposed here that, instead of calculating the Euclidean distance between two sequences, the 
sequences are transformed into feature vectors and the Euclidean distance is then calculated 
between these vectors.  If the dimension of the feature vectors is small, the features can be 
employed as a signature for indexing [12]. 
 
3. PROBLEM DEFINITION 
One major problem in assessing the effectiveness of techniques for similarity queries is that there 
is no mathematical definition for similarity.  Whilst it is trivial to model equality mathematically, 
by its nature, similarity cannot be defined exactly.  Therefore, if an algorithm finds that two 
sequences are similar, normally a human observer is required to verify this.  Even between 
different humans, the idea of similarity varies.  Thus, this paper proposes the use of time-series 
data called control chart patterns, which do have some quantifiable similarity [3, 13].  Control 
chart patterns are time series that show the level of a machine parameter plotted against time.  
The control chart patterns described in [3, 13] are artificially generated by six equations.  Each 
equation represents a different type of pattern.  Two patterns can be considered similar if they are 
generated by the same equation.  The six pattern types are illustrated in Figs 2 to 7 and are 
described as normal, cyclic, increasing trend, decreasing trend, upward shift and downward shift.  
The equations used here are based on those given in [3] and are as given below.  Each time 
sequence is of length n and is represented by an array of values y(t), where 1≤t≤n. 
 

1. Normal pattern: y(t) = m + rs        (2) 
Where m = 30, s= 2 and r is a random number between ±3 
 

2. Cyclic pattern: y(t) = m + rs + aSIN(2πt/T)      (3) 
Where a and T take values between 10 and 15 for each pattern 
 

3. Increasing shift: y(t) = m + rs +gt        (4) 
Where g takes a value between 0.2 and 0.5 for each pattern 
 

4. Decreasing shift: y(t) = m + rs – gt       (5) 
 

5. Upward shift: y(t) = m + rs + kx        (6) 
Where, for each pattern, x takes a value between 7.5 and 20.  k = 0 before time t3 and 1 after this 
time.  t3 takes a value between n/3 and 2n/3 for each pattern 
 

6. Downward shift: y(t) = m + rs – kx       (7) 



Fig. 2 Example of a Normal Pattern  Fig. 3 Example of a Cyclic Pattern 
 

Fig. 4 Example of an Increasing Trend Fig. 5 Example of a Decreasing Trend 
 

Fig. 6 Example of an Upward Shift  Fig. 7 Example of a Downward Shift 
 
4. FEATURES 
As previously mentioned, it is proposed here that a set of features, called a feature vector, is 
calculated from each time series.  The feature vectors are used by the distance function to 
determine similarity.  The motivation to employ features comes from the field of image 
processing [14]. 
 

Many different features have been employed in image processing to classify objects.  Features 
that describe the intensity, or brightness, of the pixels (picture elements) which constitute an 
object can be divided into first-order features and second-order features.  First-order features are 
based on the actual intensity of pixels and second-order features are based on the difference in 
intensities of nearby pixels. 
 
4.1 First-Order Features 
The most commonly-used first-order features are the statistical features, mean (µ), standard 
deviation (σ), skewness (SKEW) and kurtosis (KURT).  The equations for these are: 
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4.2 Second-Order Features 
The most common second-order features in image processing are co-occurrence features which 
have been shown to perform better than other second-order features [14].  Here, their description 
relates to how co-occurrence features can be calculated for a one-dimension time series.  First, 
the data is quantised into Q levels.  For example, if the sequence 1, 2, 3, 4 is quantised into 2 
levels (Q=2) then it becomes 1, 1, 2, 2.  Second, a two dimensional matrix c(i, j) is constructed 
(1≤ i,j ≤Q).  Point (i, j) in the matrix represents the number of times that a point in the sequence 
with level i is followed, at a distance d1, by a point with level j.  Finally, five co-occurrence 
features (energy, entropy, correlation (COR), inertia and local homogeneity (LH)) are calculated 
using the following equations: 
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4.3 New Second-Order Features 
New second-order features for time-series data are proposed here.  These features have the 
advantages that they do not require quantisation and are relatively simple to calculate.  First, a 
one-dimensional array is calculated called D(t): 
 

D(t) = y(t+d2) – y(t) 1 ≤ t ≤ n-d2    (21) 
 

Where d2 is the distance between the points being compared.  Second, from this array, four 
statistical features are calculated: mean, standard deviation, skewness and kurtosis.  These will 
be referred to as µ2, σ2, SKEW2 and KURT2. 
 
5. RESULTS 
For the experiments, 600 patterns were generated, 100 of each type with n equal to 60 as in [3, 
13].  Each pattern was taken in turn and compared against the other 599.  Features were extracted 
from the patterns and then scaled between 0 and 1 because each of the features has a different 
range.  Then, the Euclidean distances between the feature vectors were calculated.  The 
performance measure employed was: 
 

Performance = (T – F) / M     (22) 
 

where T is the number of patterns found to be similar which actually are similar, F is the number 
of patterns incorrectly found to be similar and M is the maximum value which T can take.  
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Therefore, optimal performance is achieved when T equals M and F is zero.  In this case, the 
overall performance is 1.  As it is not yet known how to determine ε optimally, a global search 
was performed for the best value to use simultaneously for all 600 patterns. 
 

Three sets of experiments were carried out.  First, the performance was determined of simply 
calculating the Euclidean distance between the original time series.  Second, the Euclidean 
distance between the first-order and co-occurrence features was calculated.  Third, the first-order 
and new second-order features were employed to differentiate the signals.  Each experiment was 
run three times and the average performance taken. 
 

The first set of experiments, calculating the Euclidean distance between the original signals, gave 
a performance of 0.371.  This confirms that the approach of determining sequence similarity 
based on the pure Euclidean distance between sequences is far from perfect. 
 

The results of the second set of experiments are shown in Table 1.  The best performance was 
achieved when the first and second-order features were employed together with parameter values 
Q=3 and D1=1.  The effect of varying Q and D1 can also be seen in Table 1.  The best 
performance obtained was 0.452, which shows that the feature-based approach is better than the 
simple Euclidean distance approach.  However, the co-occurrence features, when employed 
without the first-order features, gave a poor performance (0.173).  Simple visual analysis of the 
feature values showed that skewness might not be very useful in discriminating between the 
patterns.  Indeed, the results show that skewness adds very little extra benefit when employed 
with the other seven features. 
 
Features employed Parameters 

for second 
order 
features 

 

µ σ Skew Kurt Energy Entropy COR Inertia LH Q D1 Average 
performance 
(3 runs) 

√ √ √ √ √ √ √ √ √ 3 1 0.452 
√ √  √ √ √ √ √ √ 3 1 0.451 
√ √  √      - - 0.422 
√ √        - - 0.393 
√ √ √ √      - - 0.371 
√ √ √ √ √ √ √ √ √ 4 1 0.358 
    √ √ √ √ √ 3 1 0.173 
    √ √ √ √ √ 4 1 0.158 
    √ √ √ √ √ 3 2 0.081 
    √ √ √ √ √ 8 1 0.000 
 

Table 1 Experiments Using Co-occurrence Features 
 

Table 2 shows the performance of the third set of experiments.  As with the second set of 
experiments, the best performance (0.473) was achieved when the first and second-order features 
were employed together.  The main conclusion when comparing Tables 1 and 2 is that the 
second-order features proposed in this paper perform better than co-occurrence features for time-
series similarity queries.  When the new second-order features are employed without the first-
order features, the performance (0.463) is higher than any result achieved with the co-occurrence 
features.  It can be seen from Table 2 that KURT2 adds little extra benefit when added to the 



other seven features.  Also, µ2 is a vital second-order feature, as the other three second-order 
features alone cannot discriminate between the signals at all. 
 
Features employed 
µ σ Skew Kurt µ2 σ2 Skew2 Kurt2 D2 Average 

performance 
(3 runs) 

√ √ √ √ √ √ √ √ 7 0.473 
√ √ √ √ √ √ √  7 0.471 
    √ √ √  7 0.463 
    √ √ √ √ 7 0.428 
    √ √  √ 7 0.417 
    √ √ √ √ 5 0.414 
    √ √ √ √ 9 0.375 
    √ √ √ √ 3 0.321 
    √  √ √ 7 0.279 
    √ √ √ √ 1 0.049 
     √ √ √ 7 0.000 
 

Table 2 Experiments Using the New Second-Order Features 
 

6. CONCLUSION 
Most previous work in time-series similarity analysis has used the Euclidean distance between 
the signals as the basis for similarity.  However, many cases can be found where similar 
sequences are separated by a large Euclidean distance.  This paper has adopted a feature-based 
approach to similarity queries.  Common features employed in image processing were utilised as 
the basis for the experiments.  These were first-order statistical features and second-order co-
occurrence features.  This feature-based approach gave a superior performance than the 
traditional approach.  Also, new second-order features were developed and it was found these 
gave a better performance than co-occurrence features. 
 

Future work could be performed in many areas to improve upon the achieved performance.  
First, simple preprocessing could be tried on the signals, such as scaling and smoothing.  Second, 
new features could be developed and the optimum features determined to employ in similarity 
queries.  Third, different distance functions could be tested.  A possibility would be to utilise 
different values for p and q in formula (1).  Fourth, experiments could be carried out to 
determine automatically the optimal threshold for ε.  Fifth, work could be performed on the 
matching of subsequences, as proposed in [15].  Finally, the developed techniques should be 
used on real data sequences.  Any real patterns used need to be put manually into type categories 
to enable the performance measure to be calculated.  Patterns which could be employed include 
stock market prices and electrocardiograms (ECGs) [16]. 
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