
Ensemble Methods

• Construct a set of classifiers from the training
data

• Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

 Ensemble methods aim at “improving classification accuracy
by aggregating the predictions from multiple classifiers” (page
276)

 One of the most obvious ways of doing this is simply by
averaging classifiers which make errors somewhat independently
of each other

General Idea
Original

Training data

....
D

1
D

2 D
t-1

D
t

D

Step 1:

Create Multiple

Data Sets

C
1

C
2

C
t -1

C
t

Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers

Why does it work?

• Suppose there are 25 base classifiers

– Each classifier has error rate, = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes a
wrong prediction:

25

13

25 06.0)1(
25

i

ii

i

Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

1-pbinom(2, 5, .7)

Solution (continued):

1-pbinom(50, 101, .7)

Examples of Ensemble Methods

• How to generate an ensemble of classifiers?

– Bagging

– Boosting

 Ensemble methods include

-Bagging (page 283)

-Boosting (page 285)

-Random Forests (page 290)

 Bagging builds different classifiers by training on repeated
samples (with replacement) from the data

 Boosting combines simple base classifiers by upweighting data
points which are classified incorrectly

 Random Forests averages many trees which are constructed
with some amount of randomness

Bagging

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of being
selected

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Boosting

• An iterative procedure to adaptively change
distribution of training data by focusing more
on previously misclassified records

– Initially, all N records are assigned equal weights

– Unlike bagging, weights may change at the end of
boosting round

Boosting

• Records that are wrongly classified will have
their weights increased

• Records that are classified correctly will have
their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost
Data points
for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1

Illustrating AdaBoost
Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Example: AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate:

• Importance of a classifier:

N

j

jjiji yxCw
N 1

)(
1

i

i
i

1
ln

2

1

Example: AdaBoost

• Weight update:

• If any intermediate rounds produce error rate
higher than 50%, the weights are reverted back
to 1/n and the resampling procedure is repeated

• Classification:

factor ionnormalizat theis where

)(ifexp

)(ifexp)(
)1(

j

iij

iij

j

j

ij

i

Z

yxC

yxC

Z

w
w

j

j

T

j

jj
y

yxCxC
1

)(maxarg)(*

 Here is a version of the AdaBoost algorithm

 The algorithm repeats until a chosen stopping time

 The final classifier is based on the sign of Fm

 One way to create random forests is to grow decision trees top
down but at each node consider only a random subset of
attributes for splitting instead of all the attributes

 Random Forests are a very effective technique

 They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

 They can be fit in R using the function randomForest() in the
library randomForest

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)

