
Ensemble Methods

• Construct a set of classifiers from the training 
data

• Predict class label of previously unseen 
records by aggregating predictions made by 
multiple classifiers



 Ensemble methods aim at “improving classification accuracy 
by aggregating the predictions from multiple classifiers” (page 
276)

 One of the most obvious ways of doing this is simply by 
averaging classifiers which make errors somewhat independently 
of each other
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Why does it work?

• Suppose there are 25 base classifiers

– Each classifier has error rate,  = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes a 
wrong prediction:
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Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

1-pbinom(2, 5, .7)





Solution (continued):

1-pbinom(50, 101, .7)



Examples of Ensemble Methods

• How to generate an ensemble of classifiers?

– Bagging

– Boosting



 Ensemble methods include

-Bagging (page 283)

-Boosting (page 285)

-Random Forests (page 290)

 Bagging builds different classifiers by training on repeated 
samples (with replacement) from the data

 Boosting combines simple base classifiers by upweighting data 
points which are classified incorrectly

 Random Forests averages many trees which are constructed 
with some amount of randomness



Bagging

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of being 
selected

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7







Boosting

• An iterative procedure to adaptively change 
distribution of training data by focusing more 
on previously misclassified records

– Initially, all N records are assigned equal weights

– Unlike bagging, weights may change at the end of 
boosting round



Boosting

• Records that are wrongly classified will have 
their weights increased

• Records that are classified correctly will have 
their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely 
to be chosen again in subsequent rounds



Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost
Data points 
for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1



Illustrating AdaBoost
Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744



Example: AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate:

• Importance of a classifier: 
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Example: AdaBoost

• Weight update:

• If any intermediate rounds produce error rate 
higher than 50%, the weights are reverted back 
to 1/n and the resampling procedure is repeated

• Classification:

factor ionnormalizat  theis    where

)( ifexp

)( ifexp)(
)1(

j

iij

iij

j

j

ij

i

Z

yxC

yxC

Z

w
w

j

j




















 



T

j

jj
y

yxCxC
1

)(maxarg)(* 



 Here is a version of the AdaBoost algorithm

 The algorithm repeats until a chosen stopping time

 The final classifier is based on the sign of Fm







 One way to create random forests is to grow decision trees top 
down but at each node consider only a random subset of 
attributes for splitting instead of all the attributes

 Random Forests are a very effective technique

 They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

 They can be fit in R using the function randomForest() in the 
library randomForest





http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv



http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)




